Tag: self-supervised
- The effectiveness of MAE pre-pretraining for billion-scale pretraining (05 Nov 2023)
This is my reading note for The effectiveness of MAE pre-pretraining for billion-scale pretraining. This paper proposes a pre-pretraining method: starts with MAE and then hashtag based week supervised learning. It shows improvement on over 10 vision tasks and scales by model size as well as dataset size.
- Vision Transformers Need Registers (29 Sep 2023)
This is my reading note for Vision Transformers Need Registers. This paper analyzes the attention map of transformer and find too large scale transformer and trained after a long iteration, some token show exceptionally high norm. Those tokens usually correspond to patches in uniform background. Analysis indicates that those tokens are used to store global information. Thus at would heart dense prediction tasks like image segmentation. To tackle this, the paper proposes add additional tokens during trains and inference, but rejecting for outputs.