Tag: kl-divergence
- Diff-Instruct A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models (28 Aug 2023)
This is my reading note on Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models. The paper explains the theory of using a pre-trained diffusion model to guide the training of a generator model.it shows that both DreamFusion and GAN are a special case of it: score distillation sampling (SDS) from DreamFusion uses Dirac distribution to represent the generator while GAN learns a discriminator to represents the distribution of data. To this end, it proposes IKL, which is tailored for DMs by calculating the integral of the KL divergence along a diffusion process (instead of a single step), which we show to be more robust in comparing distributions with misaligned supports.