Tag: qformer
- InstructBLIP Towards General-purpose Vision-Language Models with Instruction Tuning (17 Oct 2023)
This is my reading note for InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning. The paper proposes an extension of blip 2 with institution tuning. This has dramatically improved the performance to unseen tasks. The method is based on query transformer, but adding the tokens from the instruction to guide the feature extraction.
- BLIP-2 Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (04 Aug 2023)
This is my reading note for BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. The paper propose Q former to align the visual feature to text feature. Both visual feature and text feature are extracted from fixed models. Q former learned query and output the visual embeds to the text space.
- Improved Baselines with Visual Instruction Tuning (22 Jul 2023)
This is my reading note for Improved Baselines with Visual Instruction Tuning. This paper shows how to improve the performance of LLAVA with simple methods.
- Qwen-VL A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond (09 Jul 2023)
This is my reading note for Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond. This paper proposes a vision-language model capable of vision grounding and image text reading. To do that, it considers visual grounding and OCR tasks in pre-training. In architecture, the paper uses Qformer from BLIP2.