MVSNeRF Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo
This is my reading note for MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. It first build a cost volume at the reference view (we refer to the view i = 1 as the reference view) by warping 2D neural features onto multiple sweeping planes (Sec. 3.1). It then leverage a 3D CNN to reconstruct the neural encoding volume, and use an MLP to regress volume rendering properties, expressing a radiance field (Sec. 3.2). It leverage differentiable ray marching to regress images at novel viewpoints using the radiance field modeled by the network; this enables end-to-end training of our entire framework with a rendering loss (Sec. 3.3)