Subject-Diffusion Open Domain Personalized Text-to-Image Generation without Test-time Fine-tuning

This is my reading note for Subject-Diffusion:Open Domain Personalized Text-to-Image Generation without Test-time Fine-tuning. This paper propose a diffusion method to generate images with given visual concepts and text prompt. Especially the paper is able to hand multiple visual concert jointly. To handle that, the paper detect the visual concepts from the input images, then the segmented images and bounding box are encoded feed into latent diffusion model. To enhance the consistency, the visual embedding is inserted into the text encode of the prompt.

Read More

The Victim and The Beneficiary Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data

This is my reading note for The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data. This paper proposes a method to train a model which is oust to poison data attack.it contains three components: 1) use entropy to filter out poison data; 2) train a network on clean data and improve is robustness by using attention mix; 3) combine both prison data and clean data using semi-supervised learning.

Read More