Tag: florence
- Florence-2 Advancing a Unified Representation for a Variety of Vision Tasks (14 Nov 2023)
This is my reading note for Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks. This paper proposes to unify different vision tasks by formulating them as visual grounded text generation problem where vision task is specified as input text prompt. To this end, it annotates a large image dataset with different annotations.
- The effectiveness of MAE pre-pretraining for billion-scale pretraining (05 Nov 2023)
This is my reading note for The effectiveness of MAE pre-pretraining for billion-scale pretraining. This paper proposes a pre-pretraining method: starts with MAE and then hashtag based week supervised learning. It shows improvement on over 10 vision tasks and scales by model size as well as dataset size.
- Flamingo a Visual Language Model for Few-Shot Learning (26 Oct 2023)
This is my reading note for Flamingo: a Visual Language Model for Few-Shot Learning. This paper proposes to formulate vision language model vs text prediction task given existing text and visual. The model utilizes frozen visual encoder and LLM, and only fine tune the visual adapter (perceiver). The ablation study strongly against fine tune/retrain those components.
- Florence A New Foundation Model for Computer Vision (24 Oct 2023)
This is my reading note for Florence: A New Foundation Model for Computer Vision. This paper proposes a foundation model for vision (image/video) and text based on UniCL loss. It uses Swin-transformer and Roberta for the encoder.
- Florence A New Foundation Model for Computer Vision (24 Oct 2023)
This is my reading note for Florence: A New Foundation Model for Computer Vision. This paper proposes a foundation model for vision (image/video) and text based on UniCL loss. It uses Swin-transformer and Roberta for the encoder.
- Unified Contrastive Learning in Image-Text-Label Space (23 Oct 2023)
This is my reading note for Unified Contrastive Learning in Image-Text-Label Space. This paper proposes to combine label in image-text contrast loss. It treats the image or text from the same labels are from the same class and thus is required to have higher similarity; in contrast loss of CLIP, image/text is required to be similar if they are from the same pair.
- OmniVL One Foundation Model for Image-Language and Video-Language Tasks (22 Oct 2023)
This is my reading note for OmniVL:One Foundation Model for Image-Language and Video-Language Tasks. The paper proposes a vision language pre-training method optimized to linear probe for classification problem. To this end, it modifies the contrast loss by creating positive. samples from the images of same label class.
- MaMMUT A Simple Architecture for Joint Learning for MultiModal Tasks (24 Sep 2023)
This is my reading note for MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks. The paper proposes an efficient multi modality model. it proposes to unify generative loss (masked language modeling) and contrast loss via a two pass training process. One pass is for generate loss which utilizes casual attention model in text decoder and the other pass is bidirectional text decoding. The order of two passes are shuffled during the training.
- Image as a Foreign Language BEiT Pretraining for All Vision and Vision-Language Tasks (05 Aug 2023)
This is my reading note for Image as a Foreign Language BEiT Pretraining for All Vision and Vision-Language Tasks. The paper proposes a multi modality model which models image data as foreign language and propose only to use masked language models as the pre-train tasks.