Tag: align
- Flamingo a Visual Language Model for Few-Shot Learning (26 Oct 2023)
This is my reading note for Flamingo: a Visual Language Model for Few-Shot Learning. This paper proposes to formulate vision language model vs text prediction task given existing text and visual. The model utilizes frozen visual encoder and LLM, and only fine tune the visual adapter (perceiver). The ablation study strongly against fine tune/retrain those components.
- Florence A New Foundation Model for Computer Vision (24 Oct 2023)
This is my reading note for Florence: A New Foundation Model for Computer Vision. This paper proposes a foundation model for vision (image/video) and text based on UniCL loss. It uses Swin-transformer and Roberta for the encoder.
- Unified Contrastive Learning in Image-Text-Label Space (23 Oct 2023)
This is my reading note for Unified Contrastive Learning in Image-Text-Label Space. This paper proposes to combine label in image-text contrast loss. It treats the image or text from the same labels are from the same class and thus is required to have higher similarity; in contrast loss of CLIP, image/text is required to be similar if they are from the same pair.
- OmniVL One Foundation Model for Image-Language and Video-Language Tasks (22 Oct 2023)
This is my reading note for OmniVL:One Foundation Model for Image-Language and Video-Language Tasks. The paper proposes a vision language pre-training method optimized to linear probe for classification problem. To this end, it modifies the contrast loss by creating positive. samples from the images of same label class.
- Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training (19 Oct 2023)
This is my reading note for Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training. This paper proposes several methods to improve image-text model pre-training: 1) filtering the dataset according complexity, action and text spotting (CAT); 2) concept distillation (object category and attributes); 3) hard negative mining for contrast pairs.
- Align before Fuse Vision and Language Representation Learning with Momentum Distillation (11 Oct 2023)
This is my reading note for Align before Fuse: Vision and Language Representation Learning with Momentum Distillation. The paper proposes a multi modality model which is trained base on contrast loss, mask language modeling and image-text match. To handle noisy pairs of text and image, it track moving average of model and distill to the final model.
- MaMMUT A Simple Architecture for Joint Learning for MultiModal Tasks (24 Sep 2023)
This is my reading note for MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks. The paper proposes an efficient multi modality model. it proposes to unify generative loss (masked language modeling) and contrast loss via a two pass training process. One pass is for generate loss which utilizes casual attention model in text decoder and the other pass is bidirectional text decoding. The order of two passes are shuffled during the training.
- CoCa Contrastive Captioners are Image-Text Foundation Models (31 Jul 2023)
This is my reading note for CoCa: Contrastive Captioners are Image-Text Foundation Models. The paper proposes a multi modality model, especially it models the problem as image caption as well as text alignment problem. The model contains three component: a vision encoder, a text decoder (which generates text embedding ) and a multi modality decoder , which generate caption given image and text embedding.
- Qwen-VL A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond (09 Jul 2023)
This is my reading note for Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond. This paper proposes a vision-language model capable of vision grounding and image text reading. To do that, it considers visual grounding and OCR tasks in pre-training. In architecture, the paper uses Qformer from BLIP2.
- X-CLIP End-to-End Multi-grained Contrastive Learning for Video-Text Retrieval (04 Jul 2023)
This is my reading note for X-CLIP: End-to-End Multi-grained Contrastive Learning for Video-Text Retrieval. This paper proposes a method on extending clip to video data. it mostly studied how to aggregate the similarity score from the frame level to video level.
- Tag2Text Guiding Vision-Language Model via Image Tagging (21 Jun 2023)
This is my reading note for Tag2Text: Guiding Vision-Language Model via Image Tagging. This paper proposes to add tag recognition to vision language model and shows improved performance.