Tag: llava
- TEAL Tokenize and Embed ALL for Multi-modal Large Language Models (06 Nov 2023)
This is my reading note for TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models. This paper proposes a method of adding multi modal input and output capabilities to the existing LLM. To this end, it utilizes VQVAE and whisper to tokenize the image and audio respectively. Only The embedded and projection layer is trained . The result is not SOTA.
- InstructBLIP Towards General-purpose Vision-Language Models with Instruction Tuning (17 Oct 2023)
This is my reading note for InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning. The paper proposes an extension of blip 2 with institution tuning. This has dramatically improved the performance to unseen tasks. The method is based on query transformer, but adding the tokens from the instruction to guide the feature extraction.
- Aligning Large Multimodal Models with Factually Augmented RLHF (02 Oct 2023)
This is my reading note for Aligning Large Multimodal Models with Factually Augmented RLHF. This paper discusses how to mitigate hallucination for large multimodal model.it proposes two methods, 1) add additional human labeled data to train a reward model to guide the fine tune of the final model: 2) add additional factual data to the reward model besides model’s response.
- Video-ChatGPT Towards Detailed Video Understanding via Large Vision and Language Models (26 Sep 2023)
This is my reading note for ideo-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models. The paper extends chatGPT to understand the video. It’s based on LLAVA and CLIP. One of the key contribution is that is spatially and temporal pool the per frame visual feature from the clip visual encoder and finally concatenate them as features a video.
- NExT-GPT Any-to-Any Multimodal LLM (16 Sep 2023)
This is my reading note for NExT-GPT: Any-to-Any Multimodal LLM. This paper proposes a multiple modality model which could takes multiple modalities as input and output in multiple modalities as well. The paper leverage existing large language model, multiple modality encoder image bind) and multiple modality diffusion model. To Amish the spice of those components, a simple linear projection is used for input and transformer to the output.
- Visual Instruction Tuning (02 Aug 2023)
This is my reading note for Visual Instruction Tuning. The paper exposes a method to train a multi-modality model - that woks like chat GPT. This is achieved by building an instruction following dataset that’s paired with images. The model is then trained on this dataset.
- Improved Baselines with Visual Instruction Tuning (22 Jul 2023)
This is my reading note for Improved Baselines with Visual Instruction Tuning. This paper shows how to improve the performance of LLAVA with simple methods.
- Otter A Multi-Modal Model with In-Context Instruction Tuning (05 Jul 2023)
This is my reading note for Otter: A Multi-Modal Model with In-Context Instruction Tuning. It is a replication of Flamingo model trained on MIMIC-IT: Multi-Modal In-Context Instruction Tuning.
- Grounding Visual Illusions in Language Do Vision-Language Models Perceive Illusions Like Humans? (29 Jun 2023)
This is my reading note for Grounding Visual Illusions in Language: Do Vision-Language Models Perceive Illusions Like Humans?. This paper shows that larger model though more powerful, also more vulnerable to vision illusion as human does.
- SEED-Bench Benchmarking Multimodal LLMs with Generative Comprehension (23 Jun 2023)
This is my reading note for SEED-Bench: Benchmarking Multimodal LLMs with Generative Comprehension. This paper proposes a benchmark suite of modality LLM. It introduces how is the data created and how is the task derived. For evaluation, it utilizes the model’s output of likelihood of answers instead of directly on text answers.