Tag: llm
A large language model is a type of artificial intelligence model designed for natural language processing tasks. These models, such as GPT-3, are characterized by their vast size, often containing hundreds of millions to billions of parameters, which are the variables that the model uses to make predictions. Large language models are pre-trained on massive text corpora and can understand, generate, and manipulate human language. They have the ability to perform a wide range of language-related tasks, including text generation, translation, summarization, question-answering, and more. Due to their size and training data, they can exhibit impressive language comprehension and generation capabilities.- Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V (13 Nov 2023)
This is my reading note for Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V. This paper demonstrates how to combine the Sam with gpt-4v to perform more fine grained visual understanding of visual data. To this end, the paper first uses Sam to annotate the image with region marks and number. GPT-4V is then promoted to understand the image with those annotations.
- mPLUG-Owl2 Revolutionizing Multi-modal Large Language Model with Modality Collaboration (11 Nov 2023)
This is my reading note for mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration. This paper proposes a method to unify visual and text data for multi modal model. To this end, it uses QFormer to extract visual information and concatenate to text and feed to LLM. However, it separates the projection layer and layer norm for visual and text. This paper is similar to COGVLM.
- mPLUG-Owl2 Revolutionizing Multi-modal Large Language Model with Modality Collaboration (11 Nov 2023)
This is my reading note for mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration. This paper proposes a method to unify visual and text data for multi modal model. To this end, it uses QFormer to extract visual information and concatenate to text and feed to LLM. However, it separates the projection layer and layer norm for visual and text. This paper is similar to COGVLM.
- CogVLM Visual Expert for Pretrained Language Models (10 Nov 2023)
This is my reading note for CogVLM: Visual Expert for Pretrained Language Models. This paper proposes a vision language model similarly to mPLUG-OWL2. To avoid impacting the performance of LLM, it proposes a visual adapter which adds visual specific projection layer to each attention and feed forward layer.
- Ziya2 Data-centric Learning is All LLMs Need (09 Nov 2023)
This is my reading note for Ziya2: Data-centric Learning is All LLMs Need. This paper discusses how to improve LLM performance by improves quality of data.in addition. The supervised learning is found to be more effective than unsupervised learning.
- Tell Your Model Where to Attend Post-hoc Attention Steering for LLMs (08 Nov 2023)
This is my reading note for Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs. This paper proposes to improve LLM instruction follow performance by changes the attention weight to emphasize contents highlighted by user. The attention head to model is found by profiling the model on a small scale set of data.
- CoVLM Composing Visual Entities and Relationships in Large Language Models Via Communicative Decoding (07 Nov 2023)
This is my reading note for CoVLM: Composing Visual Entities and Relationships in Large Language Models Via Communicative Decoding. This paper proposes a vision language model to improve the capabilities of modeling composition relationship of objects across visual and text. To do that, it interleaves between language model generating special tokens and vision object detector detecting objects from image.
- TEAL Tokenize and Embed ALL for Multi-modal Large Language Models (06 Nov 2023)
This is my reading note for TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models. This paper proposes a method of adding multi modal input and output capabilities to the existing LLM. To this end, it utilizes VQVAE and whisper to tokenize the image and audio respectively. Only The embedded and projection layer is trained . The result is not SOTA.
- TEAL Tokenize and Embed ALL for Multi-modal Large Language Models (06 Nov 2023)
This is my reading note for TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models. This paper proposes a method of adding multi modal input and output capabilities to the existing LLM. To this end, it utilizes VQVAE and whisper to tokenize the image and audio respectively. Only The embedded and projection layer is trained . The result is not SOTA.
- GPT-Fathom Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond (04 Nov 2023)
This is my reading note for GPT-Fathom: Benchmarking Large Language Models to Decipher the Evolutionary Path towards GPT-4 and Beyond. This paper evaluates several LLMs and found 1) openAI’s GPT significantly outperformed all other competitors and Claude 2 is #2; 2) techniques like SFT and RLHF benefits smaller models most; 3) as the model evolves, some metric may slightly degrade.
- The Impact of Depth and Width on Transformer Language Model Generalization (31 Oct 2023)
This is my reading note for The Impact of Depth and Width on Transformer Language Model Generalization. This paper shows that deeper transformer is necessary to have a good performance. Usually 4 to 6 layers is a good choice.
- Flamingo a Visual Language Model for Few-Shot Learning (26 Oct 2023)
This is my reading note for Flamingo: a Visual Language Model for Few-Shot Learning. This paper proposes to formulate vision language model vs text prediction task given existing text and visual. The model utilizes frozen visual encoder and LLM, and only fine tune the visual adapter (perceiver). The ablation study strongly against fine tune/retrain those components.
- MM-VID Advancing Video Understanding with GPT-4V(ision) (25 Oct 2023)
This is my reading note for MM-VID: Advancing Video Understanding with GPT-4V(ision). The paper proposes a system of understanding long video based on GPT 4V. To this end it first converts long video to short clips and pass every frames of clips to GPT 4V to generate text description. This description, together with audio transcription, is then ted to GPT 4U for final video understand. The analyst is based user ratings between normal vision subjects and vision impaired subjects.
- Video Language Planning (20 Oct 2023)
This is my reading note for Video Language Planning. This paper proposes to combine a video-language model and text to video generation model for visual planning: video-language models creates a execution plan given an image as current state and a text as the goal; text-to-video generation model generates a video given the plan; finally video-language models validated the plan via the generated videos.
- In-Context Pretraining Language Modeling Beyond Document Boundaries (18 Oct 2023)
This is my reading note for In-Context Pretraining: Language Modeling Beyond Document Boundaries. This paper proposes to group relevant instead of random documents in each batch to improve Long text learning. The relevant docs are found by performs a traveling salesmen problem in a graph of documents. The edges of two documents define whether the two documents are in the top k nearest neighbors.
- InstructBLIP Towards General-purpose Vision-Language Models with Instruction Tuning (17 Oct 2023)
This is my reading note for InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning. The paper proposes an extension of blip 2 with institution tuning. This has dramatically improved the performance to unseen tasks. The method is based on query transformer, but adding the tokens from the instruction to guide the feature extraction.
- Idea2Img Iterative Self-Refinement with GPT-4V(ision) for Automatic Image Design and Generation (14 Oct 2023)
This is my reading note for Idea2Img: Iterative Self-Refinement with GPT-4V(ision) for Automatic Image Design and Generation. This paper proposes a system on how to use GPT4V to generate images from idea by calling an image generation tool. Especially.it generates text prompt based on idea, given the images generated from the prompt, it ranks and selects the best image; it then generate a new promote to guide image generation process.
- RoBERTa A Robustly Optimized BERT Pretraining Approach (07 Oct 2023)
This is my reading note for RoBERTa: A Robustly Optimized BERT Pretraining Approach. This paper revisits the design choice of BERT. It provides that 1) adding more data; 2) using larger batch size; 3) training for more iterations could significantly improves the performance. In addition, using longer sentence/context could also improve performance and next sentence prediction is no longer useful.
- Efficient Streaming Language Models with Attention Sinks (05 Oct 2023)
This is my reading note for Efficient Streaming Language Models with Attention Sinks. This paper proposes a method to extend a LLM to infinite length text. This method is based on sliding attention plus prepending four sink tokens to aggregate global information. This paper shares similar idea as Vision Transformers Need Registers, which adds addition token to capture global information in attention.
- Aligning Large Multimodal Models with Factually Augmented RLHF (02 Oct 2023)
This is my reading note for Aligning Large Multimodal Models with Factually Augmented RLHF. This paper discusses how to mitigate hallucination for large multimodal model.it proposes two methods, 1) add additional human labeled data to train a reward model to guide the fine tune of the final model: 2) add additional factual data to the reward model besides model’s response.
- DeepSpeed-VisualChat Multi-Round Multi-Image Interleave Chat via Multi-Modal Causal Attention (01 Oct 2023)
This is my reading note for DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via Multi-Modal Causal Attention. This paper proposes a method for multi round multi-image multi modality model. The paper utilizes a frozen LLM and visual encoder. The contribution of the paper includes: 1. Casual cross attention method to combine image and multiround text; 2. A new dataset.
- LongLoRA Efficient Fine-tuning of Long-Context Large Language Models (27 Sep 2023)
This is my reading note on LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models. The paper proposes a method to fine tune a pretrained LLM to handle long context. To this end, it divide the data into different groups and performed attention within group; for half of heads, it shift the groups by half to enable attention across the groups.
- Video-ChatGPT Towards Detailed Video Understanding via Large Vision and Language Models (26 Sep 2023)
This is my reading note for ideo-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models. The paper extends chatGPT to understand the video. It’s based on LLAVA and CLIP. One of the key contribution is that is spatially and temporal pool the per frame visual feature from the clip visual encoder and finally concatenate them as features a video.
- VideoChat Chat-Centric Video Understanding (25 Sep 2023)
This is my reading note for VideoChat: Chat-Centric Video Understanding. The papers extends chatGPT to understand the video. To this end.it develops a video backbone based on BLIP2
- NExT-GPT Any-to-Any Multimodal LLM (16 Sep 2023)
This is my reading note for NExT-GPT: Any-to-Any Multimodal LLM. This paper proposes a multiple modality model which could takes multiple modalities as input and output in multiple modalities as well. The paper leverage existing large language model, multiple modality encoder image bind) and multiple modality diffusion model. To Amish the spice of those components, a simple linear projection is used for input and transformer to the output.
- Large Language Models as Optimizers (12 Sep 2023)
This is my reading note for Large Language Models as Optimizers. This paper discusses how to prompt larger language model to solve optimization problem, especially how to engineer the prompt to solve the optimization problem. The experiments indicate LLM is capable of solve optimization problem reasonable well, especially when problem is small and starting problem is not far from the final solution.
- SeamlessM4T-Massively Multilingual & Multimodal Machine Translation (05 Sep 2023)
This is my reading note 2/2 on SeamlessM4T-Massively Multilingual & Multimodal Machine Translation. It is end to end multi language translation system supports multimodality (text and audio). This paper also provides a good review on machine translation. This note focus on data preparation part of the paper and please read SeamlessM4T-data for the other part.
- SeamlessM4T-Massively Multilingual & Multimodal Machine Translation (04 Sep 2023)
This is my reading note 1/2 on SeamlessM4T-Massively Multilingual & Multimodal Machine Translation. It is end to end multi language translation system supports multimodality (text and audio). This paper also provides a good review on machine translation. This note focus on data preparation part of the paper and please read SeamlessM4T-model for the other part.
- Tool Learning with Foundation Models (26 Aug 2023)
This is my read note on Tool Learning with Foundation Models This is a nice review paper on how to use LLM with external tool to perform different tasks.
- Teach LLMs to Personalize -An Approach inspired by Writing Education (15 Aug 2023)
This is my reading note on Teach LLMs to Personalize -An Approach inspired by Writing Education. The paper proposes a method to generate personalized answer given a question. The method is based on finds relevant sentences from user’s previous documents given the question.
- Link-Context Learning for Multimodal LLMs (13 Aug 2023)
This is my meeting note for Link-Context Learning for Multimodal LLMs. It presents a demo of how to use positive and negative example to tell L L m to recognize novel concept.
- AVIS Autonomous Visual Information Seeking with Large Language Models (12 Aug 2023)
This is my reading note on AVIS Autonomous Visual Information Seeking with Large Language Models. The paper proposes a method on how to use L lm to use tools or APIs to solve different visual questions. The biggest contribution is this page collect how seal human uses the same set of tools and APIs to solve different visual question. The collected data generates a translation graph between states and action to take.
- Billion-scale similarity search with GPUs (11 Aug 2023)
This is my reading note on Billion-scale similarity search with GPUs. FAISS (Facebook AI Similarity Search) is an open-source library that allows developers to quickly search for similar embeddings of multimedia documents. FAISS uses indexing structures like LSH, IVF, and PQ to speed up the search. It also supports GPUs, which can further accelerate the search. FAISS was developed by Facebook AI Research (FAIR).
- Visual Instruction Tuning (02 Aug 2023)
This is my reading note for Visual Instruction Tuning. The paper exposes a method to train a multi-modality model - that woks like chat GPT. This is achieved by building an instruction following dataset that’s paired with images. The model is then trained on this dataset.
- Jointly Training Large Autoregressive Multimodal Models (28 Jul 2023)
This is my reading note for Jointly Training Large Autoregressive Multimodal Models. This paper proposes a multimodality model for generating images. The paper is not just dilution based method but instead auto regressive method.it argues to initialize the model from the weight of frozen models.
- Improved Baselines with Visual Instruction Tuning (22 Jul 2023)
This is my reading note for Improved Baselines with Visual Instruction Tuning. This paper shows how to improve the performance of LLAVA with simple methods.
- MDETR -Modulated Detection for End-to-End Multi-Modal Understanding (16 Jul 2023)
This is my reading note for MDETR -Modulated Detection for End-to-End Multi-Modal Understanding. This paper proposes a method to learn object detection model from pairs of image and tree form text. The trained model is found to be capable of localizing unseen / long tail category.
- AnyMAL An Efficient and Scalable Any-Modality Augmented Language Model (15 Jul 2023)
This is my reading note for AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model. The papa proposes a multi modality model which uses a projection layer to align the features of frozen modality encoder to the space of frozen LLM
- Teach LLMs to Personalize -An Approach inspired by Writing Education (13 Jul 2023)
This is my reading note for Teach LLMs to Personalize -An Approach inspired by Writing Education. The paper proposes a method to generate personalized answer given a question. The method is based on finds relevant sentences from user’s previous documents given the question.
- Octopus Embodied Vision-Language Programmer from Environmental Feedback (11 Jul 2023)
This is my reading note for Octopus: Embodied Vision-Language Programmer from Environmental Feedback. The paper proposes a method on how to leverage large language model and vision encoder to perform action in game to complete varying tasks.
- Qwen-VL A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond (09 Jul 2023)
This is my reading note for Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond. This paper proposes a vision-language model capable of vision grounding and image text reading. To do that, it considers visual grounding and OCR tasks in pre-training. In architecture, the paper uses Qformer from BLIP2.
- ELECTRA Pre-training Text Encoders as Discriminators Rather Than Generators (09 Jul 2023)
This is my reading note ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. This paper proposes to replace masked language modeling with the discriminator task of whether the token is from the authentic data distribution or fixed by the generator model. Especially the model contains a generator that’s trained with masked language modeling objects and discriminator to classify whether a token is filled by the generator or not.
- PaLI A Jointly-Scaled Multilingual Language-Image Model (08 Jul 2023)
This is my reading note for PaLI: A Jointly-Scaled Multilingual Language-Image Model. This paper formulates all the image-text pretraining tasks as visual question answering. The major contributions of this paper includes 1) shows balanced size of vision model and language model improves performances; 2) training with mixture of 8 tasks is important.
- Otter A Multi-Modal Model with In-Context Instruction Tuning (05 Jul 2023)
This is my reading note for Otter: A Multi-Modal Model with In-Context Instruction Tuning. It is a replication of Flamingo model trained on MIMIC-IT: Multi-Modal In-Context Instruction Tuning.
- AutoMix Automatically Mixing Language Models (03 Jul 2023)
This is my reading note for AutoMix: Automatically Mixing Language Models. Thy paper posses a verifier to verity the correctness of answer of small model and decide whether need to redirect the question to a larger model.
- Llemma An Open Language Model For Mathematics (02 Jul 2023)
This is my reading note for Llemma: An Open Language Model For Mathematics. This paper proposes to continue the training of code llama on math dataset to improve its performance on math problem.
- Language Is Not All You Need Aligning Perception with Language Models (25 Jun 2023)
This is my reading note for Language Is Not All You Need: Aligning Perception with Language Models. This paper proposes a multimodal LLM which feeds the visual signal as a sequence of embedding, then combines with text embedding and trains in a GPT like way.
- MEGAVERSE Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks (20 Jun 2023)
This is my reading note for MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks. This paper proposes a new multilingual benchmark to test LLM and provides very limited dataset for multimodality. The language distribution is also strange which houses to much on south, Asia. Overall GPT and Palm get the best performance.